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Abstract

The probabilistic formulae [Giacovazzo, Siliqi &
FernaÂndez-CastanÄ o (1999). Acta Cryst. A55, 512±524]
relating standard and half-integral index re¯ections are
modi®ed for practical applications. The experimental
tests prove the reliability of the probabilistic relation-
ships. The approach is further developed to explore
whether the moduli of the half-integral index re¯ections
can be evaluated in the absence of phase information;
i.e. by exploiting the moduli of the standard re¯ections
only. The ®nal formulae indicate that estimates can be
obtained, even though the reliability factor is a constant.

1. Symbols and notation

Papers by Giacovazzo & Siliqi (1998), Giacovazzo,
Siliqi, Carrozzini et al. (1999), Giacovazzo, Siliqi, Alto-
mare et al. (1999) and Giacovazzo, Siliqi & FernaÂndez-
CastanÄ o (1999) will be referred as papers I, II, III and
IV, respectively. The notation adopted herein is essen-
tially that used in paper IV, to which the reader is
referred.

2. Introduction

Papers I and II of this series were dedicated to the
intensity statistics of structure factors with rational
indices, of which Wilson statistics for standard re¯ec-
tions is a particular case. In papers III and IV, the joint
probability distribution functions of structure factors
with rational indices were derived. Probabilistic rela-
tionships relating the real and imaginary parts of the
structure factors were obtained, which encompass those
derived via the Hilbert-transform method (Mishnev,
1993, 1996; Zanotti et al., 1996). The ®rst part of this
paper is devoted to the applicative aspects of our theory.

In the second part of this paper, the probabilistic
theory described in paper IV will be further developed
to estimate the intensities of the half-integral index
re¯ections in the absence of phase information on the
standard re¯ections. This problem was discussed by
Mishnev (1996) in the framework of the Hilbert-trans-

form method; he concluded that, for a usual crystal
structure, it is impossible to estimate the intensities of
the half-integral index re¯ections owing to the fact that
the casual Fourier transform condition (Toll, 1956; Wu &
Ohmura, 1962) is not satis®ed. This condition is not
necessary in our probabilistic approach; therefore, it is
interesting to explore how the problem is solved by the
probabilistic techniques. Some applications to real cases
will also be described.

3. New simpli®ed formulae

In paper IV, the following conclusive formulae were
derived for the three-dimensional canonical case [here,
we explicitly set to zero the vanishing cumulants K10(p)
and K10(q)]:
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therefore, their values have to be calculated for each
pair (p, q). Some approximations may be used to reduce
the computing time: the most suitable involve the use of
normalized structure factors, of which the real and
imaginary parts are de®ned as
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We can now introduce the approximations (which are
exact for equal atom structures):P
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where Neff is the number of atoms in the unit cell for
equal-atom structures, and is the `statistically equivalent
number' for structues including different atomic species.
Zj is the atomic number of the jth atom. Then,
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It may be useful to recall that
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4. About the conditional probability P(Rp, up|{Rq, uq})

The probability distribution functions of paper IV
estimate Ap and Bp given prior knowledge of the subset
{Aq, Bq}. It is often useful, in practical cases, to express
the probability densities, and therefore the expectation
values, in terms of the modulus |Fp| and of the phase 'p.
Let us assume that

(a) P(Ap|{Aq, Bq}) and P�BpjfAq;Bqg� are given by
equations (21) and (22) of paper (IV);

(b) P�Ap;BpjfAq;Bqg��P�ApjfAq;Bqg�P�BpjfAq;Bqg�.
This is justi®ed by the fact that Ap and Bp are not
correlated. Indeed, in the canonical case, the cumulants
K12(p) and K12(q) are always vanishing, as well as the �12

terms.
Then, denoting
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series expansion of (1) as described in paper I. The ®nal
formulae are then easily obtained but are rather
cumbersome. We therefore decided to use a different
approach. Once (CPRN1)±(CPRN4) have been
obtained, we assume that
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It will be shown that this simple scheme works quite well
in the practical applications.

5. The canonical case: simpli®ed relationships for the
centrosymmetrical structures

The conclusive formulae for the estimation of the
modulus and phase of the standard and non-standard
re¯ections in space group P�1 seem quite different from
those derived in P1. It may be worthwhile noting that, in
the canonical case, the formulae can be restructured to
the same formulation. In P�1, the following relationships
hold [see equations (32) and (33) in paper III]:
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The phase 'p was estimated through the relationship
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Let us analyse option 1 of the canonical case (i.e. p is a
half-integral index re¯ection, q a standard index). Then
'p is restricted to ��=2 and, according to (7),
M01�p� sin��ps� is the expected value of Bp. Therefore,
according to (5),
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which coincides with (CPR3). Analogously, it is easy to
show that the variance (6) is identical to that calculated
via the relation (CPR4). It may be concluded that the
relations (CPR3) and (CPR4) [and therefore (CPRN3)
and (CPRN4)], originally derived for the P1 case, can be
used to estimate the structure factors of the half-integral
index re¯ections in P�1. By analogy, the reader may
easily verify that the relations (CPR1) and (CPR2) [and
therefore (CPRN1) and (CPRN2)], originally derived
for the estimation of the real part of the structure factors
in P1, can be used without any modi®cation for esti-
mating the structure factors of the standard re¯ections
in the P�1 case.

6. Experimental estimates

In the following calculations, we have used the test
structures listed in Table 1. A centric space group has
been used to check the procedure of x5. For space
groups of symmetry higher than triclinic, the unique
standard re¯ections have been expanded to simulate P1
or P�1 symmetry. To compare the estimates with the true
values, we have computed, from the published atomic
parameters, the normalized structure factors Etrue of the
standard and of the half-integral index re¯ections.

For M-FABP, in Table 2 we present, for various values
of RATIO, the number of half-integral index re¯ections
(NHI) with jEjest=�jEj > RATIO, estimated via (2), (3)
and (4), along with the corresponding relative average
phase error (ERR) and the discrepancy index R given by

R �P��jEjest ÿ jEjtrue

���P jEjtrue:

Table 1. Test structures and main crystallochemical data

Structure code Chemical composition Space group Z Neff

Data resolution
(AÊ )

Number of standard
re¯ections

SCHWARZ² C46H70O27 P1 1 71.5 0.87 4877
PGE2³ C20H32O5 P1 1 24.6 0.88 1560
NEWQB§ C24H20N2O5 P�1 4 122.3 1.04 3673
M-FABP} C667N170O216S3 P212121 4 4311.2 2.14 7589

² Data according to B. Schweizer (unpublished), retrieved from a list of test structures provided by G. Sheldrick (University of
GoÈ ttingen). ³ Data according to DeTitta et al. (1990). § Data according to Grigg et al. (1978). } Data according to Zanotti et al. (1992).
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All the observed re¯ections were used to estimate each
half-integral index structure factor. We observe that:

(a) jEjest=�jEj is a good ranking parameter which is
able to indicate, in the absence of experimental data,
which half-integral index re¯ections are accurately
determined;

(b) both ERR and R increase with decreasing values
of jEjest=�jEj. When jEjest=�jEj falls to values smaller than
unity, the estimates become unreliable (there are about
11 473 re¯ections with jEjest=�jEj< 1:5, with ERR � 46�

and R � 0:48).
In Table 3, the reverse case is considered: standard

structure factors were estimated from the true half-
integral index re¯ections. For space groups of symmetry
higher than triclinic, symmetry-equivalent standard
re¯ections were calculated and their moduli and phases
averaged. NI is now the number of standard re¯ections
with jEjest=�jEj larger than RATIO; ERR and R are the
corresponding average phase error and discrepancy

index, respectively. The trends of Table 2 are con®rmed;
in particular, the ratio jEjest=�jEj is an ef®cient reliability
parameter.

A point for consideration now arises: the `back-
evaluation' of the standard structure factors from the
true half-integral index re¯ections is not realistic
because the experimental values of their moduli are not
available. In Table 4, we present the statistical outcome
when the estimated half-integral structure factors are
used as prior information. The estimates are now more
accurate than in Table 3, owing to the fact that the errors
in the estimates of the half-integral index re¯ections are
compensated, in the reverse pathway, by the errors in
the estimation of the standard re¯ections. Therefore, to
`back-obtain' small R values for the standard structure-
factor estimates does not guarantee that the half-inte-
gral re¯ections are well estimated.

The outcome for the other test structures con®rms the
trend indicated by Tables 2±4. For brevity, we do not
give an extended statistical analysis, but only collect in
Table 5 the essential features of SCHWARZ, PGE2 and
NEWQB. For each test structure, we present the values
of NHI, ERR and R for the subset of re¯ections for
which jEjest=�jEj< 1 and for the complementary set
(jEjest=�jEj> 1). Tables 2±5 suggest that the reliability of
the estimates does not decrease with increasing struc-
tural complexity. The limited number of tests, however,
does not allow us to de®ne unequivocally the factors to
which the reliability is sensitive.

7. The probabilistic formula estimating |F |

We explore in this section whether it is possible to
estimate the structure-factor moduli of the half-integral-
index re¯ections given the moduli of the standard
re¯ections. To provide the reader with a self-consistent

Table 2. M-FABP: statistical outcome for the estimates of
the half-integral index re¯ections via equations (2), (3)

and (4)

NHI is the number of half-integral index re¯ections for which
jEjest=�jEj > RATIO; ERR and R are the corresponding relative
average phase error and the discrepancy index, respectively.

RATIO NHI ERR (�) R

0.0 31472 24.56 0.21
0.7 26101 17.05 0.18
1.5 19999 12.52 0.16
2.2 15017 10.46 0.14
4.4 5546 7.50 0.11
5.9 2711 6.37 0.10
8.1 862 5.15 0.08
9.5 382 5.58 0.08

11.0 169 5.27 0.08
13.2 42 4.00 0.05
15.4 13 4.69 0.04

Table 3. M-FABP: statistical outcome for the estimates of
the standard re¯ections via (2), (3) and (4) using the true

half-integral index re¯ections as prior information

NI is the number of standard re¯ections for which
jEjest=�jEj>RATIO; ERR and R are the corresponding relative
average phase error and the discrepancy index, respectively.

RATIO NI ERR (�) R

0.0 7589 12.42 0.15
1.4 6367 8.48 0.13
2.8 3957 5.99 0.11
4.2 2138 4.45 0.09
5.6 1151 3.38 0.07
7.0 597 2.70 0.06
8.4 352 2.40 0.06
9.8 187 1.99 0.05

11.2 103 1.78 0.05
12.6 53 1.36 0.05
15.4 17 1.06 0.04

Table 4. M-FABP: statistical outcome for the estimates of
the standard re¯ections via (2), (3) and (4) using the
previously estimated half-integral index re¯ections as

prior information

NI is the number of standard re¯ections for which
jEjest=�jEj>RATIO; ERR and R are the corresponding relative
average phase error and the discrepancy index, respectively.

RATIO NI ERR (�) R

0.0 7589 4.68 0.09
1.4 6423 2.88 0.08
2.8 3919 1.97 0.07
4.2 2080 1.61 0.06
5.6 1095 1.12 0.05
7.0 589 1.06 0.05
8.4 332 1.16 0.05
9.8 177 1.51 0.06

11.2 101 0.48 0.06
12.6 48 0.47 0.07
15.4 19 0.34 0.03
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premise, we recall the basic relations obtained in paper
IV. We denoted by

P�X� � P�X1;X2; . . . ;X2n�2�
the joint probability distribution
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;Bq1

; . . . ;Aqn
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�;
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indicate the variables we wish to estimate. The variable
Xj represents Aj or Bj according to the value of j, i.e. odd
and even values of j correspond to the A and B variables,
respectively. Then,
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where �ij are the elements of the matrix k. The dis-
tribution (10) was used to estimate X1 and X2 given
prior knowledge of the set fAq;Bq; q � 1; . . . ; ng. In

this paper, we are interested in estimating
jFqj � jA2

q � B2
qj1=2 when the only available information

is the set of moduli fjFqj; q � 1; . . . ; ng. In this situation,
it is convenient to return to the more explicit notation
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From here on, we will neglect in (11) the terms not
involving |F1| or '1 because they do not contribute to the
estimation of |F1| (see paper IV). Except for very low
resolution re¯ections, in the canonical case the following
assumptions can be made:

Table 5. SCHWARZ, PGE2, NEWQB: statistical
outcome for the half-integral index re¯ections estimated

via (2), (3) and (4)

NHI is the number of half-integral index re¯ections for which
jEjest=�jEj > 1 or jEjest=�jEj< 1; ERR and R are the corresponding
relative average phase error and the discrepancy index, respectively.

Structure code NHI RATIO ERR (�) R

SCHWARZ 701 < 1.0 64.04 0.62
4277 > 1.0 21.43 0.22

PGE2 539 < 1.0 49.43 0.53
1085 > 1.0 15.94 0.20

NEWQB 666 < 1.0 75.14 0.76
3033 > 1.0 13.53 0.28
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KAj
� KBj

� 0

�12 � 0;

�1;2jÿ1 � 0

�2;2j � 0

�2jÿ1;2jÿ1 � �2j;2j

�1;2j � ÿ�2;2jÿ1

for j � 1; . . . ; n� 1;

for j 6� 1;

for j 6� 1;

for j � 1; . . . ; n� 1;

for j � 1; . . . ; n� 1:

Then (11) reduces to

P�jF1j; . . . ; jFn�1j; '1; . . . ; 'n�1�
� �2��ÿ�n�1��det k�1=2jF1j . . . jFn�1j

� exp

�
ÿ 1

2

Pn�1

j�1

�2j;2jjFjj2 ÿ jF1j cos '1

�Pn�1

j�2

�1;2jjFjj sin 'j

� jF1j sin '1

Pn�1

j�2

�1;2jjFjj cos 'j

�
:

Let us now integrate over 'n�1 by applying the relation
(Abramowitz & Stegun, 1972)R2�

0

exp��1 sin '� �2 cos '� d' � 2�I0���2
1 � �2

2�1=2�;

where I0 is the modi®ed Bessel function. We obtain

P�jF1j; . . . ; jFn�1j; '1; . . . ; 'n�
� �2��ÿn�det k�1=2jF1j . . . jFn�1j

� exp

�
ÿ 1

2

Pn�1

j�1

�2j;2jjFjj2 ÿ jF1j cos '1

�Pn
j�2

�1;2jjFjj sin 'j ÿ jF1j sin '1

�Pn
j�2

�1;2jjFjj cos'j

�
I0�jF1j�1;2n�2jFn�1j�:

The subsequent integration over '1; . . . ; 'n results in

P�jF1j; . . . ; jFn�1j�

� �det k�1=2jF1j . . . jFn�1j exp

�
ÿ 1

2

Pn�1

j�1

�2j;2jjFjj2
�

� Qn�1

j�2

I0�jF1j�1;2jjFjj�: �12�

We can now calculate the conditional probability

P�jF1j
��jF2j; . . . ; jFn�1j�

� Lÿ1jF1j exp
ÿÿ 1

2 �22jF1j2
� Qn�1

j�2

I0�jF1j�1;2jjFjj�;

�13�
where

L � R1
0

jF1j exp
ÿÿ 1

2 �22jF1j2
� Qn�1

j�2

I0�jF1j�1;2jjFjj� djF1j

is a normalization factor which does not depend on |F1|
and may be calculated by numerical methods.

The use of (13) is time consuming if large values of n
are used for estimating |F1| and if the calculations must
be repeated for numerous |F1|. Since the argument of I0

is generally small, the approximation I0 � exp�x2=4�
may be used. Then

P�jF1j
��jF2j; . . . ; jFn�1j� � 2gjF1j exp�ÿgjF1j2�; �14�

where

g � 1
2 �22 ÿ 1

4

Pn�1

j�2

�2
1;2jjFjj2: �15�

Using standard methods, the following relationships
arise from (14):

hjF1j
��jF2j; . . . ; jFn�1ji � ��1=2=2�gÿ1=2 �16�

and

hjF1j2
��jF2j; . . . ; jFn�1ji � gÿ1: �17�

The conditional distribution (14) may be conveniently
expressed in terms of the pseudo-normalized structure
factors Ej � Fj=m

1=2
j , where mj is the value of

P
2 for the

jth re¯ection. We obtain

P�jE1j
��jE2j; . . . ; jEn�1j� � 2�gm1�jE1j exp�ÿgm1jE1j2�;

�18�
from which

jE1jest � hjE1j
��jE2j; . . . ; jEn�1ji � ��1=2=2��gm1�ÿ1=2;

jE1j2est � hjE1j2
��jE2j; . . . ; jEn�1ji � �gm1�ÿ1

and

Fig. 1. The distribution (18) for selected values of (gm1)ÿ1.
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VjE1j � �2
jE1j

� hjE1j2
��jE2j; . . . ; jEn�1ji ÿ hjE1j

��jE2j; . . . ; jEn�1ji2
� �1ÿ �=4��gm1�ÿ1

� �1ÿ �=4�jE1j2est:

We observe the following.
(a) Equation (18) reduces to the acentric Wilson

distribution when the contribution arising from the
summation on the right-hand side of (15) is neglected.
Then �22 � 2

�P
2 and gm1 � 1.

(b) If both the terms on the right-hand side of (15) are
considered, jE1j2est varies proportionally to �gm1�ÿ1,
while the variance of the estimate is large for large
values of jE1j2est. This behaviour may be easily under-
stood by considering Fig. 1, where the distribution (18) is
shown for selected values of �gm1�ÿ1: the curves are
¯atter for larger values of jE1j2est. This is undesirable
behaviour.

(c) In accordance with point (b), jE1jest=�jE1j is a
constant:

jE1jest=�jE1j � ��=�4ÿ ���1=2 � 1:91:

8. Experimental tests

The results obtained in paper IV suggest that the
calculation of �gm1�ÿ1 as given by (15) may be accom-
plished without inverting the matrix K. Since

�ÿ1
22 � 1

2

�P
2�p� ÿ

X
q

�P2
11�p; q�P

2�q�
�sp�q � sqÿp�2

��
�m1e=2;

where

e � 1ÿP
q

�sp�q � sqÿp�2;

and, since

�1;2j � ÿ �K1;2j=K2j;2j��22

� ÿ �P11�p; qj��sp�qj
� sqjÿp�

�P
2�qj�

�
�22

� ÿ 2m
ÿ1=2
1 m

ÿ1=2
j eÿ1�sp�qj

� sqjÿp�;

then

gm1 � eÿ1 ÿ eÿ2
P

q

�sp�q � sqÿp�2jEqj2: �19�

Because of numerical approximations, gm1, as given by
(15) or (19), may be too close to zero; hence its reci-
procal �gm1�ÿ1 may become too large. To avoid nu-
merical instabilities, we introduce into (19) the
approximation �1ÿ x�ÿ1 � 1� x. Then (19) becomes

jE1j2est � �gm1�ÿ1

� e
�
1� eÿ1

P
q

�sp�q � sqÿp�2jEqj2
�

� 1�P
q

�sp�q � sqÿp�2�jEqj2 ÿ 1�: �20�

Equation (20) has been applied to the test structures
listed in Table 1 and the results are shown in Table 6
[NREFL is the number of half-integral index re¯ections
whose moduli have been estimated via (20) and R is the
corresponding discrepancy index]. It may be observed
that the R index is relatively high for all the test struc-
tures (compare it with the R indices in Tables 2±5,
obtained when the phase information is available), but it
should be acceptable if a reliability index was available
to pick up the most accurate estimates. Unfortunately,
this is impossible, owing to the fact that jEjest=�jEj is
expected to be a constant for all the re¯ections. Such a
result may be compared with the conclusion of Mishnev
(1996) arising from the Hilbert-transform method: while
the Hilbert-transform method is unable to estimate half-
integral re¯ections, the probabilistic approach is less
restrictive but does not provide a criterion for picking up
the most reliable estimates.

We thank the referees for useful revisions and
suggestions.
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